
Lecture notes Abstract Modern Algebra: Lecture 21

1 Rings of polynomials

In this section we shall assume that R is a commutative ring with identity. Any
expression of the form

f(x) =
n∑
i=0

aix
i = a0 + a1x+ · · ·+ anx

n,

where ai ∈ R and an 6= 0, is called a polynomial over R with indeterminate x. The
elements a0, a1, . . . , an are called the coefficients of f . The coefficient an is called the
leading coefficient. A polynomial is called monic if the leading coefficient is 1. If
n is the largest nonnegative number for which an 6= 0, we say that the degree of
f is n and write deg f(x) = n. If no such n exist, the polynomial is called the zero
polynomial and the degree is defined to be −∞.
The ring of polynomials with coefficients in R is denoted by R[x]. For any polynomials
f(x), g(x), we have the following properties

1. For f(x) =
∑n

i=0 aix
i and g(x) =

∑m
i=0 aix

i, the product f(x)g(x) is defined by

f(x) · g(x) =
n+m∑
i=0

cix
i,

where ci =
∑i

j=0 ajbi−j.

2. As a consequence of the previous property deg(f(x)g(x)) = deg(f(x))·deg(g(x)),
as long as R is an integral domain.

3. On the other hand, for the sum and the difference

deg(f(x)± g(x)) ≤ max(deg(f(x)) deg(g(x))).

Remark 1. We can not expect R[x] to be an integral domain if R is not an inte-
gral domain. The product of two non-zero polynomials can be the zero polynomial.
Consider, for example, the polynomials

p(x) = 3 + 3x3 and q(x) = 4 + 4x2 + 4x4.

We can check that p(x)q(x) = 0 in Z12. In particular, in this case, the degree
deg p(x)q(x) 6= deg p(x) + deg q(x).

On the other hand, we expect some good properties:
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Theorem 2. Let R be a commutative ring with identity. Then R[x] is a commutative
ring with identity.

Proof. Our first task is to show that R[x] is an abelian group under polynomial
addition. The zero polynomial, f(x) = 0, is the additive identity. Given a polynomial
p(x) =

∑n
i=0 aix

i, the inverse of p(x) is easily verified to be −p(x). Commutativity
and associativity follow immediately from the definition of polynomial addition and
from the fact that addition in R is both commutative and associative.

Theorem 3. (Evaluation homomorphism) Let R be a commutative ring with
identity and α ∈ R. Then we have a ring homomorphism ϕα : R[x] −→ R defined by

ϕα(p(x)) = p(α) = anα
n + an−1α

n−1 + · · ·+ a1α + a0,

for p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0.

Proof. Let p(x) =
∑n

i=1 aix
i and q(x) =

∑m
j=1 bjx

j. It is easy to show that the evalu-
ation on the sum ϕα(p(x)+q(x)) = ϕα(p(x))+ϕα(q(x)). To show that multiplication
is preserved under the map ϕα, observe that

ϕα(p(x)q(x)) =
n∑
i=1

aiα
i ·

m∑
j=1

bjα
j = ϕα(p(x)) · ϕα(q(x))

The map ϕα : R[x] −→ R is called the evaluation homomorphism at α.

Question 4. What is the kernel of the map ϕα?

To be answer that question we will work first over a field F . For polynomials with
coefficients in a field, we can do a division algorithm similar to the one we do with
integers.

Theorem 5. (Division Algorithm) Let F be a field. Let f(x) and g(x) be polyno-
mials in F [x], where F is a field and g(x) is a nonzero polynomial. Then there exist
unique polynomials q(x), r(x) ∈ F [x] such that

f(x) = g(x)q(x) + r(x),

where either deg r(x) < deg g(x) or r(x) is the zero polynomial.

Proof. The proof is analogous to the proof on integers with the degree of the poly-
nomial playing the role of the absolute value. We proceed using induction on the
degree. Suppose that f(x) is not the zero polynomial and that deg f(x) = n and
deg g(x) = m. If m > n, then we can let q(x) = 0 and r(x) = f(x). Hence, we
may assume that m ≤ n and proceed by induction on n. If f(x) =

∑n
i=1 aix

i and
g(x) =

∑m
j=1 bjx

j, the polynomial

f ′(x) = f(x)− an
bm
xn−mg(x)
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has degree less than n or is the zero polynomial. By induction, there exist polynomials
q′(x) and r(x) such that

f ′(x) = q′(x)g(x) + r(x),

where r(x) = 0 or the degree of r(x) is less than the degree of g(x). Now let

q(x) = q′(x) +
an
bm
xn−m

Then
f(x) = g(x)q(x) + r(x),

with r(x) the zero polynomial or deg r(x) < deg g(x). The uniqueness of the the
polynomials q(x), r(x) is proved by contradiction, since the existence of two different
pairs q1, r1 and q2, r2, will give an equation of the sort

g(x)(q1(x)− q2(x)) = r2(x)− r1(x),

where r1 − r2 is a polynomial of degree less than deg g(x). This forces r1(x) = r2(x)
and q1(x) = q2(x).

Now, we are in position of describing the kernel of the map ϕα : F [x]→ F :

Corollary 6. Let F be a field. An element α ∈ F is a zero of p(x) ∈ F [x] if and
only if x − α is a factor of p(x) in F [x]. In other words, the kernel ker(ϕα) of the
map ϕα : F [x]→ F is the ideal Iα = 〈x− α〉.

Proof. Suppose that α ∈ F and p(α) = 0. By the division algorithm, there exist
polynomials q(x) and r(x) such that

p(x) = (x− α)q(x) + r(x)

and the degree of r(x) must be less than the degree of x−α. Since the degree of r(x)
is less than 1, the polynomial r(x) must be a constant r(x) = a for element a ∈ F ;
therefore,

p(x) = (x− α)q(x) + a.

But 0 = p(α) = 0 · q(α) + a = a and consequently, p(x) = (x−α)q(x), and x−α is a
factor of p(x). Conversely, suppose that x−α is a factor of p(x); say p(x) = (x−α)q(x).
Then p(α) = 0.

Remark 7. The division algorithm does not work when we are not over a field, for
example, we cannot find q(x) and r(x) for f(x) = x2 − 5 and g(x) = 2x + 1 in Z[x].
The division algorithm by monic polynomials does work over all rings. So, if α is a
root of a polynomial p(x) ∈ R[x] then p(x) = (x − α)q(x) If the number β 6= α is
another root of p, then (β − α)q(β) = 0. Unfortunately, we cannot conclude that
q(β) = 0, because β − α might be a zero divisor in R.
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Corollary 8. Let F be a field. A nonzero polynomial p(x) of degree n in F [x] can
have at most n distinct zeros in F .

Proof. We will use induction on the degree of p(x). If deg p(x) = 0, then p(x) is a
constant polynomial and has no zeros. Let deg p(x) = 1. Then p(x) = ax + b for
some values of a, b ∈ F . If the α1 and α2 are both zeroes, we get α1 = α2.
Now assume that deg p(x) > 1. If p(x) does not have a zero in F , then we are done.
On the other hand, if α is a zero of p(x), then p(x) = (x−α)q(x) for some q(x) ∈ F [x].
The degree of of the polynomial q(x) is n− 1. Let β be some other zero of p(x) that
is distinct from α. Then p(β) = (β − α)q(β) = 0. Since α 6= β and F is a field, we
must have q(β) = 0. By our induction hypothesis, q(x) can have at most n− 1 zeros
in F that are distinct from α. Therefore, p(x) has at most n distinct zeros in F .

Remark 9. The inequality in the previous corollary is necessary. The field of real
numbers F = R has polynomials, like p(x) = x2 + 1 with no-real roots.

Definition 10. A field F such any polynomial of degree n with coefficients in F
has exactly n zeroes is called an algebraically closed field.

Example 11. The field of real numbers R is not algebraically closed. The field of
complex numbers is algebraically closed, although we are not going to prove it here.
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