Lecture notes Abstract Modern Algebra: Lecture 21

1 Rings of polynomials

In this section we shall assume that R is a commutative ring with identity. Any
expression of the form

f(z) :Zaﬂi =ap +a1xr + -+ a,z",
i=0

where a; € R and a,, # 0, is called a polynomial over R with indeterminate x. The
elements ag, a1, ..., a, are called the coefficients of f. The coefficient a,, is called the
leading coefficient. A polynomial is called monic if the leading coefficient is 1. If
n is the largest nonnegative number for which a, # 0, we say that the degree of
f is n and write deg f(z) = n. If no such n exist, the polynomial is called the zero
polynomial and the degree is defined to be —oo.

The ring of polynomials with coefficients in R is denoted by R[z]. For any polynomials
f(z),g(x), we have the following properties

1. For f(z) = >0 ja;x" and g(z) = > 1" a;2’, the product f(z)g(x) is defined by
n-+m .
F) o) = 3 e
i=0
where ¢; = Z;":o ajbi_;.

2. As a consequence of the previous property deg(f(z)g(x)) = deg(f(z))-deg(g(x)),
as long as R is an integral domain.

3. On the other hand, for the sum and the difference

deg(f(x) £ g(x)) < max(deg(f(x)) deg(g()))-

Remark 1. We can not expect R[z] to be an integral domain if R is not an inte-
gral domain. The product of two non-zero polynomials can be the zero polynomial.
Consider, for example, the polynomials

p(z) =3 + 323 and q(z) = 4 + 42° + 42"

We can check that p(z)g(x) = 0 in Zjs. In particular, in this case, the degree
deg p(z)q(z) # degp(z) + deg g(z).

On the other hand, we expect some good properties:
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Theorem 2. Let R be a commutative ring with identity. Then R[x] is a commutative
ring with identity.

Proof. Our first task is to show that R[z]| is an abelian group under polynomial
addition. The zero polynomial, f(z) = 0, is the additive identity. Given a polynomial
p(z) = Y0, a;x, the inverse of p(x) is easily verified to be —p(z). Commutativity
and associativity follow immediately from the definition of polynomial addition and
from the fact that addition in R is both commutative and associative. [

Theorem 3. (Evaluation homomorphism) Let R be a commutative ring with
identity and o € R. Then we have a ring homomorphism ¢, : R[x] — R defined by

0a(p(x)) = p(Q) = apa™ + ap_1a™ "t + -+ aya + ag,
Jor p(ZE) = a," + an—lfﬂnil + -+ ax + ag.

Proof. Let p(z) = >_7 aa’ and g(z) = 37", bjal. Tt is easy to show that the evalu-
ation on the sum @, (p(x) +q(z)) = va(p(z)) + @alq(x)). To show that multiplication
is preserved under the map ¢,, observe that

pa(p(r)a(@) = 3 a0’ > bjo? = ¢a(p(®)) - pala(®))

The map ¢, : R[z] — R is called the evaluation homomorphism at «. O
Question 4. What is the kernel of the map ¢,?

To be answer that question we will work first over a field F. For polynomials with
coefficients in a field, we can do a division algorithm similar to the one we do with
integers.

Theorem 5. (Division Algorithm) Let F be a field. Let f(x) and g(x) be polyno-
mials in Flz|, where F' is a field and g(x) is a nonzero polynomial. Then there exist
unique polynomials q(x),r(x) € F|x] such that

f(x) = g(x)q(x) + (),
where either degr(z) < deg g(x) or r(x) is the zero polynomial.

Proof. The proof is analogous to the proof on integers with the degree of the poly-
nomial playing the role of the absolute value. We proceed using induction on the
degree. Suppose that f(x) is not the zero polynomial and that deg f(x) = n and
degg(z) = m. If m > n, then we can let ¢(z) = 0 and r(z) = f(z). Hence, we
may assume that m < n and proceed by induction on n. If f(z) = Y " a;z' and
g(x) = >0, bja?, the polynomial

) = fla) — 2" mg(x)



has degree less than n or is the zero polynomial. By induction, there exist polynomials
¢ (x) and r(x) such that

f'(@) = q'(x)g(x) + r(x),

where r(x) = 0 or the degree of r(x) is less than the degree of g(z). Now let

an n—m

Then
f(z) = g(z)q(x) +r(x),

with r(z) the zero polynomial or degr(z) < degg(x). The uniqueness of the the
polynomials ¢(z), () is proved by contradiction, since the existence of two different
pairs ¢, and ¢, 9, Will give an equation of the sort

9(@)(q1(z) = 2(x)) = r2(2) = 11(2),

where 7 — 5 is a polynomial of degree less than deg g(z). This forces () = ro(x)
and ¢;(z) = ¢2(x). O

Now, we are in position of describing the kernel of the map ¢, : F[z] — F"

Corollary 6. Let F be a field. An element o € F is a zero of p(x) € Flz| if and
only if x — a is a factor of p(x) in F[x]. In other words, the kernel ker(p,) of the
map @o: Flr] = F is the ideal I, = (x — ).

Proof. Suppose that a € F and p(a) = 0. By the division algorithm, there exist
polynomials ¢(x) and r(x) such that

p(z) = (z — a)q(x) + r(z)

and the degree of 7(z) must be less than the degree of x — . Since the degree of ()
is less than 1, the polynomial r(z) must be a constant r(z) = a for element a € F
therefore,

ple) = (@ - a)q(x) + a.

But 0 = p(a) = 0+ g(a) + a = a and consequently, p(x) = (x — a)q(x), and x — « is a
factor of p(x). Conversely, suppose that x—a is a factor of p(z); say p(z) = (z—a)q(z).
Then p(a) = 0. L

Remark 7. The division algorithm does not work when we are not over a field, for
example, we cannot find ¢(x) and r(z) for f(z) = 22> — 5 and g(x) = 2z + 1 in Z[z].
The division algorithm by monic polynomials does work over all rings. So, if « is a
root of a polynomial p(x) € Rx] then p(z) = (z — a)q(x) If the number § # « is
another root of p, then (5 — a)q(f) = 0. Unfortunately, we cannot conclude that
q(B) = 0, because  — a might be a zero divisor in R.
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Corollary 8. Let F' be a field. A nonzero polynomial p(x) of degree n in F[z]| can
have at most n distinct zeros in F.

Proof. We will use induction on the degree of p(z). If degp(x) = 0, then p(z) is a
constant polynomial and has no zeros. Let degp(z) = 1. Then p(z) = azx + b for
some values of a,b € F. If the oy and ay are both zeroes, we get oy = an.

Now assume that degp(z) > 1. If p(z) does not have a zero in F, then we are done.
On the other hand, if « is a zero of p(z), then p(x) = (x—a)q(z) for some q(z) € F[z].
The degree of of the polynomial g(z) is n — 1. Let [ be some other zero of p(z) that
is distinct from . Then p(8) = (6 — a)q(B) = 0. Since a # [ and F is a field, we
must have ¢() = 0. By our induction hypothesis, ¢(x) can have at most n — 1 zeros
in F' that are distinct from «. Therefore, p(z) has at most n distinct zeros in F. [

Remark 9. The inequality in the previous corollary is necessary. The field of real
numbers F = R has polynomials, like p(z) = 2% + 1 with no-real roots.

Definition 10. A field F' such any polynomial of degree n with coefficients in F'
has exactly n zeroes is called an algebraically closed field.

Example 11. The field of real numbers R is not algebraically closed. The field of
complex numbers is algebraically closed, although we are not going to prove it here.
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